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of a General Matrix when 

the Eigensystem is Poorly Conditioned 

By J. M. Varah* 

Abstract. The problem of calculating the eigensystem of a general complex matrix is well 
known. In many cases, however, the eigensystem is poorly determined numerically in the 
sense that small changes in the matrix can cause large changes in the eigensystem. For 
these matrices, a decomposition into higher-dimensional invariant subspaces is desirable. 

In this paper we define a class of matrices where this is true, and propose a technique 
for calculating bases for these invariant subspaces. We show that for this class the 
technique provides basis vectors which are accurate and span the subspaces well. 

1. Introduction. Much attention has been given recently to the numerical 
solution of the eigenproblem AX = XA, where A is a general complex n X n matrix, 
A is the diagonal matrix of eigenvalues, and X is a matrix of column eigenvectors 
{Xi} In. In particular, the QR algorithm followed by inverse iteration yields an ap- 
proximate eigensystem such that each eigenvalue-eigenvector pair is exact for a 
slightly different matrix A + E, with IIEIH2 < rq, where ql is the machine single- 
precision roundoff level and r is a small machine-dependent integer (see [6]). We 
assume throughout that IIx i12 = IA2 = -1. 

Because of probable errors in the original matrix A, this is about as satisfactory 
a result as can be expected for a general matrix. However, in many cases the ap- 
proximate eigensystem is still very inaccurate, so that the original problem must 
be regarded as "not well-posed." Because of the result quoted above, this is equiv- 
alent to the matrix A having a poorly conditioned eigensystem in the sense that 
small perturbations in A can cause large changes in the eigensystem. 

In such a case we turn to the more general problem of finding invariant sub- 
spaces of A, i.e., solving AX = XM, where M is blocl-diagonal and the columns 
of X corresponding to a particular block of M form a basis for an invariant sub- 
space of A. This problem can always be made well-posed for large enough subblocks 
of M; but the problem is to find invariant subspaces of as small dimension as is 
feasible, commensurate with maintaining an accurate approximate solution. Here 
there is an additional consideration: as well as requiring that the invariant sub- 
space be insensitive to perturbations in A, we also would like the basis vectors for 
the invariant subspaces to be well-separated, so that the invariant subspace is well- 
determined numerically. We will make this rigorous in the next section. 

In Section 3 we characterize a class of matrices for which the original eigen- 
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problem is not well-posed, and propose an iteration for producing basis vectors for 
higher-dimensional invariant subspaces. For this class of matrices we show that the 
approximate basis vectors are both accurate and well-separated. 

Finally, in Section 4, we discuss the computational problems involved in dealing 
with a general matrix, and outline a strategy which has proven fairly successful. 

2. Perturbation Theory. For a given n X n matrix with eigenvalues X1, *.* , X 
and eigenvectors xi, ***, x,, consider a perturbation of the form EB, with I1BI12 < 1. 
If Xi is simple, Wilkinson (Chapter 2 of [9]) shows that there is an eigenvalue 
Xi(E) of A + EB with 

(2.1) Xi(E) - Xil _ Kl*E/jsi4 

where K1 is a constant and si - =yTXi, yiT being the row eigenvector of Xi nor- 
malized so that IIYiII2 = 1. Moreover, the corresponding normalized eigenvector 
xi(E) satisfies 

(2.2) Ii~i() - XiJJ2 <K2 
- E 

(2.2) jxi(c) - xil2 < {sil mini jXi - X|13 

Here K1 and K2 depend only on n. 
For Isil not too small, these bounds are realistic estimates of the eigensystem 

perturbations. Indeed, in this case the techniques introduced by Wilkinson giving 
these bounds by means of Gerschgorin's theorems furnish realistic error bounds for 
the eigensystem (see [7]). However, the eigenvectors corresponding to very close 
eigenvalues are very sensitive to perturbations in A so the bounds obtained are 
necessarily large. This problem can be dealt with effectively only by considering 
the subspace spanned by eigenvectors of close'eigenvalues as a single invariant 
subspace. Here, since the Isil are not small, the eigenvectors are well-separated, and 
so form a well-determined invariant subspace. This problem has been treated by 
Kahan [4] and Davis and Kahan [2] for the case of a Hermitian matrix A. 

For eigenvalues with small Isil, the bounds (2.1) and (2.2) may not be useful, 
and we again must consider higher-dimensional invariant subspaces. Here however, 
the eigenvector basis is not appropriate, as we shall see in the next section. In this 
section we would like to give perturbation results corresponding to (2.1) and (2.2) 
for invariant subspaces. 

First of all, we need a measure of distance between two subspaces. 
Definition 2.1. Let S and T be subspaces of En with s = dim (S) _ t = dim (T). 

'Then the angles Omin(S, T), Omax(S, T) are defined by 

sin Gmax (S, T) = max min ffu- v112 
uC-S; | Mt12=1 vCT 

sin Omin(S, T) = min min lu - v1I2. 
uCS; 1UI 12=1 veT 

Thus Omx(S, T) and Omi,(S, T) are the maximum and minimum angles between 
-vectors in S and their projections in T. If X is an n X s matrix whose columns form 
wan orthonormal basis for S, and Y = [Y11 Y2] is an n X n unitary matrix whose first 
It columns Y1 form an orthonormal basis for T, then 
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sin Omax (S, T) = -max (Y2*X) 

(2.3) cOs Gmax (S, T) = amin (Yi*X) 
sin Omin (S, T) = 0min (Y2*X) 

cos 6min (S, T) -Tmax(Yi*X), 

where O < Omin (C) = 0T1 < 02 _<. * o-, e= o-max (C) are the q = min (r, p) 
singular values of the p X r matrix C, i.e. the positive square roots of the eigenvalues 
of C*C or CC*, whichever is q X q. Here C* denotes conjugate transpose. 

These angles have been used by many people in the same context. See Davis 
and Kahan [2] for a thorough discussion of their properties in relation to Hermitian 
operators. The angle Omax is also used by Kato [5, p. 197] to measure the "gap" 
between linear subspaces of a Banach space. 

By considering the perturbation matrix A + EB = A (e) as an analytic function 
of e in some neighborhood of E = 0, Kato [5, Chapter 2] gives an elegant description 
of the eigenspace perturbation using the resolvent operator R( , E) = (A (e)- 

For each fixed E, this is a meromorphic function of t with poles at the eigenvalues 
IX(E)} of A(E). Near each eigenvalue Xj(E) with multiplicity mj, R(Q, E) has the- 

Laurent series 

RQ E) = -(E) - - X()) (D() 

+ E (a _ Xj-(e)),(Sj(e))n+l n=O 

Kato shows that the eigenvalues Xj(e), the eigenprojections 

Pj(E) = 27i'r(e) R(Q E)d ' 

where Pj(E) encloses only Xj(E), and the eigennilpotents 

D j(e) =-~- (~ - Xj(,E))R(Q, e)d~ ) 27ri j(e) 

are all branches of analytic functions of E with possible algebraic singularities at 
points where A (e) has multiple eigenvalues. 

The rest of the expression for RQ(, e) is analytic and is called the reduced re- 
solvent of A(E) at Xj(E); it involves powers of 

Sj(E) = - 
Z f Q - Xi(E)) 1R(, e)d . 

Now let X1(O) have multiplicity m. Then-for IEl small, this eigenvalue splits into 
m parts Xi(E), * * *, Xm(E) called the X-group. Given a path F enclosing X1(O) but not. 
Xm+i(O), . I Xn(O), then for 1 El small enough, the X-group also lies within P and the 
other eigenvalues of A(E) are outside r. The total projection for the X-group, 

P(E) = Pi(E) + .. + Pm(E) = fR( E)dJ 

gives the invariant subspace of XA(e), * *, Xm(E). Because of this representation the: 
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total projection is analytic at E = 0. Kato gives the perturbation series for it: 
00 

P(E) = P(O) + E EkP(k)(O) 
k=1 

in terms of the perturbation series for A(E), the operators P1(0), D1(0), and S1(0), 
the latter called the reduced resolvent of A, evaluated at E = 0. 

We wish to state a similar result from a numerical point of view giving a bound 
on the perturbation in the invariant subspace measured by the angle 0max defined 
above. 

THEOREM 2.2. Let A be an n X n complex matrix with eiqenvalues Xi, * . *,A. Let 
X be a nonsingular matrix whose columns xi have iX i112 = 1 with X-'AX = M, where 
M is block-diagonal and upper triangular and such that no two subblocks of M have 
eigenvalues in common. If A, = A + EB, JJB[ 2 < 1, then for E small enough we can 
choose X, and M, such that 

AX, = XEME 

where Mf has the same block-diagonal form as M. Furthermore, for each subblock 
M(k) of M and Me(k) of Mf, consisting of rows and columns sk + 1 through sk+1, the 
corresponding invariant subspaces S(k) and S,(k) are such that 

(2.4) sin Omax(S(k), Se(k) < K( E 
( 

O-Min (X) O min (Xk) 

where X (k) denotes columns sk + 1 through sk+1 of X and K depends on n, the dimension 
of the subspace, and on 

dk= min jxi-X2 
Sk< i< Sk+l; i< Sk s S> 3k+1 

A proof of this can be found in Chapter 2 of [8]. The method of proof is a gen- 
eralization of that used by Wilkinson for the one-dimensional case. It has been 
refined and automated to give rigorous machine bounds for the errors in an ap- 
proximate set of invariant subspaces in Chapter 6 of [8]. 

The two factors occurring in the denominator of (2.4) are measures of the two 
contributors to the perturbation as noted in the Introduction: 

(1) _Tmin(X (k)) is a measure of the linear independence of the basis vectors for the 
subspace, since 

c'min(X (k) = mi IIX(k)c112 
IIC, 1 2=1 

Definition 2.3. The spanning precision of a set of vectors X = (xi, * Xk, Xk) with 
fXilJJ2 = 1, is defined by p(X) = 0-min(X). 

One may think a better measure is 

min cond2 (XD) = min -(XD)' 
D diag D diag Gfmin(X ) 

as suggested by Bauer [1], but these quantities are very closely related, as follows: 

(2.5) 1 mm cond2 (XD) < [p (X)]-' < min cond2 (XD) . 
Vn D D 
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The first inequality is trivial since omax(X) ? \/n. To see the second, notice that 

max (IjXWll21IjD-w 1 l2 )D- 
cond2 (XD) - W ( 0 /D > JID-'z 12 lJXeil l2 

mun (jjXzjj2/jjD-'zjj2) = Dejj min(X 
zXO 

for any i, where we have taken zo such that omin(X) = 1IXZo012, llZo112 = 1, and where 
ei is the ith column of the identity matrix. Now let i be such that Id I> I djd, j # i. 
Then since IfD-'zojj2 > 11/dil, the second inequality follows immediately. 

(2) 0min(X) is a measure of sensitivity of the invariant subspaces to perturba- 
tions. For a particular invariant subspace, we should consider all X and M with 

AX=XM, M=( Mj(2)), 

M(1) having eigenvalues X1, * * *, X, (fixed), and form maxx (amin(X)) to get a true 
measure of sensitivity for that invariant subspace. 

Let Y = [Y17 Y2,1] be such an X with the columns of Y, an orthonormal basis 
for S(1), and Yn, an orthonormal basis for S(2). Then the general X = YC, 

C-{C (%o 
0 C2/ 

with the columns of C having Euclidean norm one. Now we have 

L'min(Y) < maxomin(YC) = max min IIYCzII2 
C C 11Z112=1 

< max IIC I2 Lrmin(Y) < Vl/namin(Y), 
C 

so we can effectively consider amin(Y) as our measure of sensitivity. But 

((Tmin(Y))2 = \min(y 
I YV* 

Y 
I 1 - max(Yp*Yn-,p) 

= 1- COS Omin (S(1)Y (2)) = 2 sin2 ( in 

Thus the minimum angle between the two complementary invariant subspaces 
is a good measure of sensitivity of the invariant subspace to perturbations in the 
original matrix. This is a direct generalization of the one-dimensional case, as the 
si in (2.1), (2.2) are precisely the sines of these angles. 

3. Approximate Invariant Subspaces for Numerically Defective Matrices. In 
machine computation one must be careful when using the angle Omin(S('), S(2)) as a 
measure of sensitivity. All matrices A + E, with Ieij < i 1 aij , are represented the 
same and so give the same approximate set of invariant subspaces; but the angles 
Omin(S(1), S(2)) of these matrices may differ very much. For the simple example 

A =( ), A + E = ?+) 

we have Isin O (xi, x2)1 = (0/(1 + 0))1/2, 0 = 1E/1J1 . Thus for 0 < If -< I we have 
O < Isin 0,(xi, X2)1 ? 1/V/2. Because of this, the angles themselves do not show 
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whether the approximations will be poor. In fact, for this example the approximate 
eigensystem generated by inverse iteration will probably be very reasonable. What 
we can say is that if all the angles Omin(S(i), S(D)) are not small for all matrices 
A + E, flE 12 < i, then the problem is well-conditioned; conversely, if some angle 
Omin(S(i), S(i)) is small for all such E, then the problem is poorly conditioned. 

We wish to restrict our attention to a class of matrices where the latter statement 
is true for the eigenproblem, and show how a different technique will provide bases 
for higher-dimensional invariant subspaces satisfying both essential conditions: 

(1) the basis vectors have a high spanning precision, 
(2) the approximate invariant subspaces are close to the exact ones. 
Definition 3.1. Let a and a be given parameters with 0 < a << a < 1. Let A o have 

eigenvalues Xi, **.*, AX with X1 = * = Xk = X, and set do = mini>k 1X - XjI > 0. 
Suppose the singular values of A -XI, 0 = 0 < * * * < are such that uk > a. 
Then we say that any matrix A = Ao + E, IjE I2 < y, is numerically defective with 
respect to a and 3. 

The case a = = 0 gives the usual notion of a defective matrix. For numerical 
work, we can take 3 = 1l and a some larger value. Of course we must use a < do so 
the other eigenvalues do not influence the defectiveness. The effect of different 
values of a is made clearer in the following theorem. 

THEOREM 3.2. Let A be numerically defective with respect to a and 5, and let X be 
the matrix of normalized eigenvectors. Then for a small enough, 

cond2 (X) ? Ka 2/a' /k 

where K is independent of a and a. 
Proof. We have A = Ao + E, IjEj12 < S. Let the columns of X be {xj} with 

corresponding eigenvalues { Xi I}, so that 

(3.1) (Ao + E - iI)xi = O . 
Let { y,}n = Y be an orthonormal set of eigenvectors of (Ao - XI) * (Ao - XI), so 
that 

(3.2) (Ao - XI)*(Ao - XI)yi = 2 

Then we can write X = YC, and cond2(X) = cond2(C). Multiplying X by 
(Ao - XI)*(Ao - XI) and using (3.1) and (3.2), we have 

n 

(3.3) (Ao - Xl)*((Xi - X)I - E)xi = ?cijfj 2yj 
j=1 

Since X is a kth order root, the perturbation series for the corresponding k roots 
of (A + EB) is at worst 

i(E) =X + diel/k+ .. , i = 1, * *,k. 

(See Kato [5, p. 65].) Thus for a small enough that the perturbation series converges, 
we have 

I~i -A XI Kool/" k ,... s 
where Ko depends on the nature of the multiple root X and on do. Hence inner- 
products of (3.3) with yp give 
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Icivof2 
< 2 (Ko5l/k + 3) < K1.811k 

li 
= 1, * **, p = 1,**, n 

Thus we have ci,,j < Kal1/k/a2 for i = 1, **, A;, p > k. Now let v be a vector 
with vt = 0 for i > k, v orthogonal to the first (k - 1) columns of C, and jl11v2 = 1. 
Then 

jjX'j12 = 0'min(C) ? iivTqi2 2 ( i) 1 

Thus, since jjXj12 ? 1, we have 

2 a a2 
cond2 (X) * K= K Q.E.D. 

-(n + 1)K18'/, 81/kC 

Now consider the ?(Ao - XI) further. Suppose 0 = '< ... < * T-< _ a and 

G'm+? > a. Then in the case a = a = 0, m gives the number of independent eigen- 
vectors associated with X. Numerically, if 0m << a, o-m+l > a, we have m independent 
approximate eigenvectors. We are interested in finding a basis for the invariant 
subspace associated with X. Our analysis here will cover the case m = 1 (o-1 = O0 
072> a), but an extension can be made to cover m > 1 which is meaningful numeri- 
cally if 0 = o < ... < um < A << a and -m+l > a. We will say more about this at 

the end of this section. 
For m = 1 we can call the matrix numerically nonderogatory. For such a matrix 

consider the following iteration: 

(A - Xi'I)xl = xo 

(3.4) (A - X2I)y2 = Xi 

(A - Xk'I)Yk = Yk-1. 

Here { X,' } 1k are the eigenvalue approximations for A corresponding to the multiple 
root X. Here we make the 

Assumption. The { X,'} In are the exact eigenvalues of a single matrix A o+ EF, 

JIFI12 = 1, e < . We must also assume a is small compared to do so that the per- 
turbed eigenvalues corresponding to X are well-determined. 

The initial vector x0 is chosen so that xi reflects the near-singularity of (Ao - 

X1'I), i.e., so that JJx1112/11x11|2 is close to 1/E. We claim (3.4) produces basis vectors 
for the k-dimensional invariant subspace S(1) associated with X which are accurate 
and span the space well. In our analysis, we use perturbation results, and our con- 
clusions hold rigorously only for small enough E. However, numerical results indicate 
that the conclusions hold in practical circumstances. 

First, we need a characterization theorem for the eigenvalue approximations 
Xi')}?k As Kato shows [5, p. 65], if the perturbed eigenvalues are considered as 

functions of a single perturbation parameter E, they form one or more cycles of 
period ? k around X and have the expansion (with period p) 

Xi(E) = X + C6OpE I/p + O(E2/p) 

where cop = e2ri/P and (qj, . . *, qk) = permutation (1, * * *, k). Here, with a slight 
assumption on the perturbation F, this expansion holds with v = k. For the analysis 
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we consider Ao reduced to Schur triangular form T = QAoQ* with to = X, i = 1, 
.*, k. Since Q is unitary, it preserves 12 norms and none of our estimates are 
changed. The { X/i }I k are then the corresponding eigenvalues of T + E(QFQ*). Now 
suppose 

T - 
(T, T2) 

where T1 is k X k; let 

R (I R2) 

be such that 

B RTR' = ( 1 ). 

Then the {Xi'} are the roots of det (B + EF' -I) = 0, F' = RQFQ*R-1. Let 
f = Fkf. It is easy to see that cond2(R) depends on the angle between the subspaces 
SW') and S(2). In fact, 

fIRI! 2 = ffR-1112 ? 1 +1 
sin Omin(S(1), SS(2) 

THEOREM 3.3. Let Ao be as in Definition 3.1 and the {Xi'}1k as in the above as- 
sumption. Then if f # 0, we have for E small enough 

Xi' = X + CCkqi E Ik + 0 (E2/k) 

and c satisfies (IffI ak-') I < ICJ < If Il/k. Here (qj, , qk) = permutation (1, *, k) 
and ck = e2ri/k. 

Proof. Expanding the determinantal equation by the first k rows, 

det (B + EF' - I) = det (T1 - I + EF'(1 I k 

.det (T3- ?I + EF(k 1 n + 0(E2). 

Setting tq = X- and expanding the first determinant, we have on the right 

[(_l)k k + (_ )klpk- 1 (E)k-1 + *+ P(E)] TI (x) - - a)) + O(e ) 
i>k 

where pi(E) = sum of the principal minors of order (k - i), so that 

Ipi(E)I _ (< ) cond2 (R)e and Po(E) = f(t tj,i+l)E + O(E2). 

Thus, for e small enough, this has roots Xi(E) = X + Cck~iE' k + O(E2/k), and c = 
(f fJik-: ti,+i)1/k. Moreover, we have Iti,+1I > a, since 

ft12 ... tlk 
a ?< amin(T -XI - (1st column)) < amin . < mint,+1I. 

tk-1 ,k 
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THEOREM 3.4. Consider the iteration (3.4) with A = Ao transformed into B = 

RQA oQ*R-1. In this basis, let b = Xk(0) 5 0 and 2(i) = y(i)/IIy(i) 11 2. Then for e small 
enough, the columns {Z } Ilk are essentially upper triangular with nonzero diagonal, 
so that ojin(Z) > co' > 0. Moreover, if S(l) is the subspace generated by Z, 
sin Gmax(S('), Ei) ? Kie. Thus, in the A-basis, this means the spanning precision 

p (Q*R1 z) > co'/cond2 (R) 
and 

sin max(Q*R-1S(l), S~l) < K1 cond2 (R)E. 

Proof. The iteration can be expressed as y(m) = B(m)x(0), where BWm) 

(B - Xm'I)-ftB(rn-l) B(?) = I. Now if A. = 1/(X- m'), 

I _1 -1 

Am ... . tlk 

AM-1 ... t2k 0 
(B - xmur)l- 

Am = 773 - xm'II 

_ O T3 0tI 

First of all, Il(T3 - XI)-'1 2 ?< 1/a, so that 

||(T3 -Xm'I)'112 < (a - C61 k + 0(62/k))-= (j0))-1 

which implies Iyj(m)I < (3(E))-m for i > k. Also, inverting the triangular matrix 

gives 

(B -XmI )7 '+p = Am (-)muipgmP + E cijpimj'], 
(3.5) i=2 

i = ly,.., p =0,1, *.*,k-i, 

where ut,, = JIJ+P-l t+ and Ic jpI < Ko. To get an expression for B(m), notice that 

(B - Xm'I)-l = G(Xm) = resolvent function of B evaluated at Xm'. From the 

resolvent equation 

G(1)- G(Q2) = (Q2 - {)G(Q2)G(Q1), 

we have easily 

(3.6) B~m (Am, .. * l8) = 2-Al _[B~m1 (Am, * *2) - B~m (Am .. I * 3y Al)]. 
I'2 - I'i 

Now we claim 

" i "Z)+p =(1) Am~l .. A m[ (- 1)pu ipRp(m) (Ai1 .. * Am) 

(3.7) P ) 

+ L Ci (m)- (Al .,** AM) 
j=2 

where Rp(m)(I'l, *.. um) is the complete symmetric polynomial of degree p in 

A1, ..., I'm; i.e., 

Rp(m) (Al, ... IAm) =Atl ... Am (R(m) 5 
ikO ;2k ik=P 
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Expanding Rp(m) in powers of /Xq gives the recurrence relation 

R (m) IU * q m) = Rp (M-1) (,U12 .. * * n ,ae ,Aqll .. * Am) + ,t~R(m)l (i,, .. * *, m) 
p 

= ,/ 
( q~ m -. 1) (AU i I .. I I-iq-1l Aq+1l .. I * m) 

j=O 

Now we can prove (3.7) by induction. It clearly holds for m = 1 from (3.5). Then 
(3.6) and the induction assumption give 

B j,, = (-1 )m11 ... Am[ (1)Pruip 

(A2R (m-1) (112 ... * *'m) - Ap R(m-l) (Il A32 .., 2 Am) 

p 11 2R T. T 1) (A 22 ...2 Awm) - AR(,.m-- 1) (/A,, 3,U3 ... 2 Am)8 
+ LCijp /1 

+=2 -11 -1m) 

But applying (3.8) with q = 1, 2 gives the identity 

(A2- Al)Rj () = I2Rjtm-l) (A22 ..2 Am) - ARj (M-1) (1A3.. m) 

which gives (3.7). 
To bound the elements of B(m), we need bounds for Rp(m). The polynomial 

Rp(k) ( 1, ..., 2 1k) of all the roots is related to the elementary symmetric polynomials 
Sj(1, . , ,k) as follows (Householder [3, p. 91]): 

p1 (k) =(k) (k) p- tk) (3.9) (-1)pRRp = Sp - SplR1 + Sp_2R2 + *. + (-1) 'SRRp1l 

The Si are the coefficients of the reciprocal polynomial to that given in the proof of 
Theorem 3.3, i.e., Si = pj(E)/po(E), j < k, and Sk = (-1)k/po(E). Thus 

( .i) cond2 (R) 
Si(E) I < + k- +(,E) j < k, 

Ifa klo 

and 

(1 + 0 (1E) < ISk (E) I < I b (1 + 0 (6)). -1 Ilk-1 

So the Rp(k) can be bounded using (3.9) and, in particular, each is bounded inde- 
pendently of E (for p <? k- 1). 

Now applying the recurrence relation (3.8) in reverse gives for p _ m, 

Rptkm) = (-A1)mk-m+1 *A /IkRP-m(1 +O(El)) 

This gives for p > k - 

/+m-k \ 

|B?,,p I_ Kolc k( I JRjtk)I)&-1(1 + 0(El/k)) 
j=O 

and 

Bgm) = (-1)m-C Uki,k-m(1 
+ 0(El/k)) 
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For p < k - m, we have directly from (3.7) 

IB(m) I < ( + - 
l)(- 1 

/k)m+p(l + 0(el/k)) 

The binomial factor is the number of terms in Rp(m). This gives the following 
estimates for yi(m): 

fori < m, y(m)I < 7Ge K ( e _b (m) 

(3.10) Y (m) - ( 1)m +O()) 

+ 1 - b_(1(+ Om)(/k) 

form <i < k I(m) I k (1+ O(E1/k)) 
= Iyi Via = (Jf k-l)1-((i-m) /k) 

Previously we had for i > kj, {y i(m)f< (,(E))-m. Now if we set z(m) = y(m)/ym(m), 

we have Ilz(m)112 _ 1 so that 

(1)k 
( 
in) knf 

sin Gmax(Si 1 El) - Zf Kle . 

Now to bound -mi n(Z), where Z = ZD1 is the matrix of normalized columns, recall 
from Section 2 that omin(ZD,) _ c-min(Z)/crmax(Z). From (3.10) we have 

(3.11) omax(Z) < iJzim) < k(', b)(1 + O(,E'1)) 
m,\i 0 

with bo = 1. To bound 

0'mnin(z) = aminz ) 

where Zi is k X k, we have 

1 l~~~~~IIZi-' 112 
Omin(Z) = (1 - 

IIZJ-1112211Z2122)"2 = ZlZV1112(1 
? O(E2)) 

since 

I( 2112 lbl(n 3(E))k~f 
[ b (# (e) )k 

And if we let Zi = U + L, where L is the strict lower triangle, we have 

Z1 =I-11 1U1f2(1 + O(,El/k)) 1 - (LU-1121L1d112 
since 

E Izi I ? 2k (1flak g)l~k(I + O(El) 
m< i; k 

Moreover, since = Ui- < bm~i and U =- k U71 UijUjk, we have 
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p-1 

[s 1 pt_ jtpj p = i + 1, I * Ik 
j= i 

with co = 1. This gives U1 l2 < k(k 1 Ckki), which, together with (3.11), gives 

c, n('i) < k2(a b) (a C) (1 + O(rllk)) = 

The estimates on the A-basis given by the columns of Q*R-1Z, normalized, now 
follow easily. Q.E.D. 

This theorem can be extended easily to cover the case where the iteration (3.4) 
is performed on A = A o + E, IIEIu 2 < 5, and to include the effect of roundoff errors 
in (3.4). The essential form of the iterates remains the same; only the constants are 
modified (see Chapter 5 of [8]). 

Now consider a numerically defective matrix with ol(Ao - XI) small, i.e., 
m > 1 for reasonable a. Then Theorem 3.3 no longer holds for the approximations 

X{'}lk, but if 0 = T 1 < ... < A ? o << a and o-m+1 > a, under similar assump- 
tions on the perturbation matrix F, one can show that the { Xi'} form m groups or 
cycles about X at a distance e] Ikj from X where kj is the period of the jth cycle. Thus 
the same iteration (3.4) applied to each of the cycles in turn will produce a set of 
basis vectors for the invariant subspace associated with that cycle. This is described 
in Chapter 5 of [8] and numerical results indicate that this does produce well- 
separated accurate basis vectors for each subspace. 

4. Computational Aspects. In any scheme used to compute bases for invariant 
subspaces, we must decide which set of subspaces to find. For this, we could calculate 
the o-i(A - XI), but this requires a great deal of effort. Instead, with the preceding 
analysis in mind, we propose the following strategy. For a given eigenvalue ap- 
proximation X1', we first find an approximate eigenvector by solving (A - XiI)x(l) 
= Xt?), with xt?) chosen so that IX (1) 2 is close to 71-1 (see [6]). To decide whether 
to take the invariant subspace associated with X1' as one-dimensional, we solve 
(A - X1I) y = x (1) and consider the increase in norm I y 11 2/ X (1)1 2. If X 1' corresponds 
to a semisimple root X, this increase will again be close to w-i. However, if X1' corre- 
sponds to a multiple eigenvalue X giving a numerically defective matrix A, the 
increase in norm will be about qlF' 1k, where k is the order of the root X. This is easily 
seen from the form of (T -1'I)-' given in the proof of Theorem 3.4, or from the 
fact that 

y = [G(X ')]2x(0) = - ([-dh G( )],)x) 

and if G(t) has leading term 1/(- X)k in its Laurent expansion about X, the 
derivative has leading term 1/(t - X)k+l. 

So if the increase in norm is close to 11-l, we accept Xi' as a semisimple root and 
go on; otherwise we use the iteration (3.4) to find other basis vectors. In the latter 
case, if X2' and Xi' belong to the same cycle, then Ily(2)I2 -= l(A - X2'I)-'x(')l2 will 
also be close to fli- as can be seen from Theorem 3.4, so there will be little increase 
in norm. However, if they are not in the same cycle but are close to each other, 
x (l) will be like any other initial vector and the norm increase will be large (probably 
close to qnr1). So we accept X2' as in the same cycle and y(2) as a basis vector if the 
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increase in norm IIy(2)II2/Ix(')II2 is not large (i.e., is close to 1). We continue trying 
(3.4) for all approximations close to Xi' and build up the invariant subspace for the 
whole cycle. Then we start all over again with a new XI'. 

This strategy is used as the basis for a working Algol program. More details, 
numerical results, and the program listings are given in Chapter 5 of [8]. 
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